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INTRODUCTION

Fabricating and operating complex systems involves dealing with uncertainty in the relevant
variables. In the case of aircraft, flow conditions are subject to change during operation. Efficiency and
engine noise may be different from the expected values because of manufacturing tolerances and normal
wear and tear. Engine components may have a shorter life than expected because of manufacturing
tolerances. In spite of the important effect of operating- and manufacturing-uncertainty on the
performance and expected life of the component or system, traditional aerodynamic shape optimization
has focused on obtaining the best design given a set of deterministic flow conditions. Clearly it is
important to both maintain near-optimal performance levels at off-design operating conditions, and,
ensure that performance does not degrade appreciably when the component shape differs from the
optimal shape because of manufacturing tolerances and normal wear and tear. These requirements
naturally lead to the idea of robust optimal design wherein the concept of robustness to various
perturbations is built into the design optimization procedure.

Recognition of the importance of incorporating the probabilistic nature of the variables involved in
designing and operating complex systems has led to several investigations in the recent past. Some of
the basic principles of robust optimal design are discussed by Egorov et al.1.  Several commonly used
approaches such as maximizing the mean value of the performance metric, minimizing the deviation of this
metric and, maximizing the probability that the efficiency value is no less than a prescribed value are
discussed in their paper. Egorov et al.1 make the observations that a) robust design optimization is in
essence multi-objective design optimization because of the presence of the additional objective
(robustness) and, b) the addition of the robustness criterion may result in an optimal solution that is
substantially different from that obtained without this criterion. Various approaches to robust optimal
design are also mentioned in this article.  

While the discussion above focused on the effect of uncertainty in the variables on performance,
their effect on constraint satisfaction is equally important from a reliability perspective. Here the focus is on
maximizing the probability of constraint satisfaction. Koch et al.2, provide a discussion of this and related
concepts. Some of the basic steps involved in both robust optimal design as well as reliability-based
optimization such as a) identifying random variables and their associated probability density functions, b)
reducing this set of variables to a smaller subset of key random variables, to reduce optimization costs and,
c) the effective utilization of Monte Carlo techniques to obtain estimates of performance variability or
reliability, are discussed by the authors.

Simulation based design optimization can be computationally expensive in cases where the
underlying physics is complicated. Some of the contributing factors are three-dimensionality, a large
disparity in the largest and smallest scales that are required for an accurate analysis etc. The addition of the
robustness criterion can greatly increase computational requirements because of the need to estimate
the variance in performance or reliability. Koch et al.2, reduce computational cost by first obtaining the
optimal solution via a deterministic approach and subsequently adding the reliability requirement. In a
separate article Koch et al.3use Kriging models to compute performance variability and reliability.

 
The imposition of the additional requirement of robustness results in a multiple-objective

optimization problem requiring appropriate solution procedures. Typically the costs associated with
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multiple-objective optimization are substantial. Therefore efficient multiple-objective optimization
procedures are crucial to the rapid deployment of the principles of robust design in industry. Hence the
companion set of lecture notes (Single- and Multiple-Objective Optimization with Differential Evolution
and Neural Networks 4) deals with methodology for solving multiple-objective optimization problems
efficiently, reliably and with little user intervention.

Genetic and evolutionary algorithms have been applied to solve numerous problems in
engineering design where they have been used primarily as optimization procedures. These methods
have an advantage over conventional gradient-based search procedures because they are capable of
finding global optima of multi-modal functions (not guaranteed) and searching design spaces with disjoint
feasible regions.  They are also robust in the presence of noisy data. Another desirable feature of these
methods is that they can efficiently use distributed and parallel computing resources since multiple
function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and
independently on multiple processors. For these reasons genetic and evolutionary algorithms are being
used more frequently in design optimization. Deb5 reviews numerous genetic and evolutionary algorithms
for use in multiple-objective optimization.  More recent developments such as 1) using hierarchical
population topologies, 2) surrogate models to compute the objective function, 3) clustering of data into
multiple classes for improved algorithm performance and constructing multiple response surfaces and 4)
using non-dominated solutions from previous generations, can be found in Refs.6 - 8.   

Here we focus on applications of an evolutionary algorithm for multiple-objective optimization
developed by Rai.9 This method is based on the method of Differential Evolution (DE) developed by Price
and Storn10 for single-objective optimization. One goal of this developmental effort was a method that
required a small population of parameter vectors to solve complex multiple-objective problems involving
several Pareto fronts (global and local) and nonlinear constraints. Applications of this evolutionary method
to some difficult model problems involving the complexities mentioned above are also presented in Ref.9.
The computed Pareto-optimal solutions closely approximate the global Pareto-front and exhibit good
solution diversity.  Many of these solutions were obtained with relatively small population sizes. Rai9 also
explores the possibility of using neural networks to obtain estimates of the Pareto optimal front. Achieving
solution diversity and accurate convergence to the exact Pareto front usually requires a significant
computational effort with the evolutionary algorithm. The use of neural network estimators has the
potential advantage of reducing or eliminating this effort thus reducing cost to design. The estimating
curve or surface can be used to generate any desired distribution of Pareto optimal solutions. This
method is discussed in detail in the companion set of lecture notes4.

Applications of this new method9 to robust design are presented here. The evolutionary method
is first used to solve a relatively difficult problem in extended surface heat transfer wherein optimal fin
geometries are obtained for different safe operating base temperatures. The objective of maximizing the
safe operating base temperature range is in direct conflict with the objective of maximizing fin heat
transfer. This problem is a good example of achieving robustness in the context of changing operating
conditions. The evolutionary method is then used to design a turbine airfoil; the two objectives being
reduced sensitivity of the pressure distribution to small changes in the airfoil shape and the maximization
of the trailing edge wedge angle with the consequent increase in airfoil thickness and strength. This is a
relevant example of achieving robustness to manufacturing tolerances and wear and tear in the presence
of other objectives.
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ROBUST DESIGN OPTIMIZATION OF FINS

Extended surface heat transfer, i.e., heat transfer with the aid of fins of different shapes, is of
importance in a multitude of engineering applications ranging from transport vehicles, to electronic
components, industrial heat exchangers and nuclear power generation. Design optimization in the
context of fins deals with reducing fin weight and volume for a given heat load, subject to constraints
related to fin shape and size.

Fins used in boiling heat transfer are particularly difficult to analyze from first principles because of
the complex flow physics involved. Haley and Westwater11 and Westwater12 provide an excellent
description of fins used in boiling heat transfer and the associated heat transfer processes.  Their
experiments show that different types of boiling including nucleate- and transition-boiling, and film boiling
occur on these fins. Often, all these boiling modes together with free-convection co-exist at a single
operating point resulting in heat transfer coefficients that vary considerably along the length of the fin.
Methods of analysis must take these variations in heat transfer coefficient into account to yield accurate
estimates of heat load. At low fin-base temperatures (compared to the fluid boiling temperature) the entire
fin is in a free-convection mode. As the base temperature increases above the boiling temperature of the
fluid, high heat transfer nucleate-boiling appears at the base of the fin. As the temperature is increased
further, relatively low heat transfer film boiling appears at the base, followed by high heat transfer
transition- and nucleate-boiling further away from the base, and free-convection at the tip of the fin.
Additional increases in base temperature result in transition- and nucleate-boiling at the tip of the fin
leaving the rest of the fin in a film-boiling mode. Even larger base temperatures result in the entire fin
being in a film-boiling mode.

Haley and Westwater11 and Westwater12 provide experimental and computational data
(temperature profiles and heat load at different base temperatures) for different fin-shapes. The main
thrust of these articles is the optimization of the shape of the fin to achieve maximum heat load for a given
fin volume, that is, single-objective optimization. Optimizing the performance of fins used in boiling heat
transfer requires that the cross-section of the fin be tailored so that most of the surface area is in a
nucleate- or transition-boiling mode. Considerable increases in heat load, compared to the heat loads that
can be obtained with simple cylindrical spines and rectangular fins, can be achieved by using the optimal
cross-sectional area distribution. These optimal shapes are typically complex and are difficult to
manufacture. Additionally, as the nucleate- and transition-boiling regimes are pushed off the tip of the fin
as the base temperature increases, there can be a sudden and large decrease in the heat load. This
phenomenon is undesirable because it occurs just when a higher heat load capacity is required. Here we
investigate the possibility of maximizing both the heat load and the safe operating base temperature range
(SOBTR) using the multi-objective version of DE4, 9.

For the sake of simplicity, and without loss in generality, the fin shapes investigated in this
optimization study are restricted to double cones with a cylindrical base. Figure 1 shows a schematic of the
fin. It is defined using four variables, the length and diameter of the cylindrical base, and the base diameter
and length of the truncated cone. The length of the second cone is obtained from a fin-volume constraint.
Westwater12 first suggested this particular geometry as an approximation to an optimal “turnip” shape and
conducted an experimental investigation of its efficiency. Rai and Rangarajan13 provide detailed two-
dimensional (axi-symmetric) finite element computations for this fin-shape.

Figure 2 shows the fin heat load as the base temperature is increased. The heat load increases to
a maximum value and then abruptly decreases. Optimizing the fin shape (for a given base temperature), to
maximize heat load, would yield a fin that would operate close to the peak of the heat load curve. This is
undesirable because small increases in operating base temperature result in large decreases in the
amount of heat that the fin transfers to the fluid. Figure 3 shows the temperature distribution along the
length of the fin. The rapid decrease in temperature in the first 10% of the fin occurs because of the small
diameter of the cylindrical base. Thereafter, the temperature drop is more gradual because of the larger
cross-sectional area. Assuming that the base temperature is higher than the temperature at which film-
boiling occurs, it is clear that the narrow base of the fin can be used to drop the temperature such that the
remaining large portion of the fin surface is at a temperature at which nucleate- and transition-boiling occur.
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The goal of the multiple-objective optimization is

€ 

Maximize :  Heat Load =  - kAdT
dx
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Maximize :  SOBTR =  Tpeak -heat -load  -  Tbase    
Subject to:  Fin Volume =  Constant              

                                                                              (1)       

where k is the thermal conductivity of the fin, A is the cross-sectional area of the fin at its base, dt/dx is the
temperature gradient at the base, Tbase is the base temperature and Tpeak-heat-load is the base temperature
at which the peak heat load is obtained for a given shape. The base temperature and the fluid temperature
were specified as 320°F and 120°F, respectively. The temperature variation in the fin was computed by
solving the one-dimensional heat conduction equation using an iterative finite-difference method.

Ten parameter vectors were used in the optimization and the evolutionary process was run for 80
generations. This required computing 29592 temperature distributions, which far exceeds the 800
(80x10) simulations that would normally be required. This is because the accurate evaluation of the
SOBTR for each fin-shape requires numerous temperature-distribution computations (each with a
different base temperature). Figure 4 shows the computed Pareto-optimal solutions and a neural-network
estimate of the Pareto-front. Point A in Fig. 4 represents the fin-shape, heat load  (179.6 BTU/Hr.) and
SOBTR (6.4°F) for the Pareto optimal solution corresponding to maximum heat load. Point B represents
the fin shape, heat load (103.1 BTU/Hr.) and SOBTR (158.7°F) for the Pareto-optimal solution with the
maximum SOBTR.

Figure 5 shows the variation of heat load as a function of the base temperature for the fins
denoted as points A and B in Fig. 4. It is clear that fin B allows for a wide range of safe base temperatures
about the nominal value of Tbase = 320°F (Tbase – Tambient  = 200°F) but yields a lower heat load at the nominal
value of base temperature. In contrast, fin A, yields a higher heat load at the nominal base temperature but
has a smaller range of safe base temperature values. Figure 5 indicates that for a base temperature
increase (over nominal) of about 10°F, film-boiling pervades the entire length of fin A. Figure 6 shows the
shapes of fins A and B. The longer cylindrical base of fin B results in a larger temperature drop before the
majority of the fin surface is encountered. Thus, up to a point, nucleate- and transition-boiling persist on
the majority of the fin surface, even though the base temperature is much higher than the temperature at
which film-boiling is initiated. However, at the nominal base temperature, the temperature drop in the base
of the cylinder is larger than required for optimal operation and a larger portion of the fin is in a free-
convection mode. This results in heat loads that are smaller than that obtained with fin A.

The multi-objective evolutionary method4, 9 was found to be better suited to this fin optimization
problem than response surface methodology and gradient based methods. This is because the
discontinuity in the heat load as the base temperature is increased (Fig. 2) results in a discontinuity in the
first objective function (Eq. 1) in design space.  The high-heat-load Pareto optimal solutions lie in the
vicinity of this discontinuity in the objective function. Thus computing the gradient or constructing
standard response surfaces becomes problematic.  

The fin optimization problem solved above has focused on obtaining the maximum heat load for a
given value of SOBTR. Conceptually it is similar to aerodynamic shape optimization in the context of
uncertain operating conditions. The next section focuses on design optimization in the presence of
uncertainties in airfoil shape.
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ROBUST AIRFOIL SHAPE OPTIMIZATION

The accuracy to which a component is manufactured depends on the available manufacturing
technology and other factors such as manufacturing cost. Component shapes are also subject to change
because of wear and tear. The performance, reliability and life expectancy of the component may depend
critically on maintaining the shape of the component. Clearly there is a need to desensitize these aspects
of the component to small (and perhaps large) changes in shape.

The following is an example that illustrates the use of mutiple-objective DE in desensitizing
performance to changes in component shape. It consists of subsonic flow through a row of stator airfoils in
an axial turbine. The flow is assumed to be inviscid and two-dimensional.  Details regarding the grid
generation and flow simulation procedures, and the airfoil parameterization method can be found
elsewehere.14-15 Although eight parameters were used to parameterize the airfoil, only two of them were
varied during optimization. These two parameters have very little effect on the shape of the suction side of
the airfoil. Their primary effect is on the shape of the pressure side of the airfoil. The first requirement is
that the variance in pressure with small changes in airfoil shape is minimized. The second requirement is
that the wedge angle at the trailing edge is maximized (this increases the thickness of the airfoil and thus
its strength). These two requirements are to be met subject to the constraints that the required exit Mach
number and flow turning angle are achieved. The two objective functions are defined as

€ 

Minimize :  V =  (pi
i=1

i= imax

∑
n=1

n=nmax  

∑ −  pi
n)2

Minimize :  θ =  θref -  θw

                                                                                             (2)                                                    

In Eq. 2 imax is the number of grid points on the surface of the airfoil, nmax is the number of geometry
perturbations used to compute the variance,  

€ 

pi  is the pressure at the ith point on the surface of the given
geometry, and 

€ 

pin  is the surface pressure at the same point for the nth perturbation of this geometry. The
quantity θref is a reference angle and θw is the wedge angle. The manner in which the geometry
perturbations are obtained depends on the probability density function assumed for the perturbations in
the geometry. Egorov et al.1 remark that a normal distribution is commonly observed for manufacturing
tolerances. Here a simple approach is adopted; the perturbations are computed by perturbing one
geometry variable at a time. Replacing this with normally distributed surface perturbations is
straightforward.

The perturbed airfoil shapes as well as the base airfoil used in computing the objective function
(Eq. 2) are obtained using the same airfoil parameterization scheme. This assumes that the geometry
perturbations found in reality can be represented with the same number of geometric parameters that are
used to represent the base airfoil. However, a finite number of geometry parameters can only yield
approximate representations of the perturbations found in reality. Hence the approach computes
approximations to the objective function of Eq. 2 (even when the sample size is large).  Nevertheless the
current approach has practical value. The set of perturbed airfoil shapes can be greatly enhanced by
adding a perturbation function to the base airfoil shape. This function can be constructed with many more
independent parameters governing its behavior than the number of parameters used to generate the
base airfoil shape.  This results in a very flexible perturbation function. Computing the variance with this
extended set of airfoils is computationally expensive. Here we use the extended set only for assessment
and not during optimization.

The DE search was conducted over 25 generations and with 10 parameter vectors. This required
780 two-dimensional airfoil simulations. Figure 7 shows the Pareto optimal solutions obtained at the end
of this process. Normalized values of the two parameters that govern the shape of the airfoil are shown on
the two axes. Points A and B on the estimate represent the minimum variance and maximum wedge angle
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solutions, respectively. The computed optimal solutions exhibit a moderate amount of noise. A hybrid
network consisting of 10 individual single-hidden-layer feed-forward networks was used to obtain an
estimate of the Pareto optimal front using the training data from DE. The estimated Pareto front is also
shown in Fig. 7. Continued evolution (10 additional generations requiring 300 flow simulations) only
resulted in a small improvement in the computed solutions. On the other hand, the hybrid network
estimate was obtained without requiring any additional simulations. Figure 8 shows training data and the
estimate of the Pareto front in objective space. It is important to note that the estimating curve in this figure
was obtained by selecting uniformly spaced points on the estimating curve in Fig. 7 and subsequently
computing the flow over these selected shapes (and corresponding geometry perturbations).

Figure 9 shows the airfoils corresponding to the minimum variance and maximum wedge angle
cases (points A and B in Fig. 7). The minimum variance case is a thinner airfoil whereas the maximum
wedge angle case is thicker and thus stronger. Figure 10 shows the computed pressure distributions for
the two airfoils. The minimum variance airfoil does not exhibit a suction side undershoot and the pressure
is nearly constant in the last 75% of the axial chord. This is because sharp variations in pressure are
generally sensitive to geometry variations and, are thus avoided in this airfoil. The estimate of the local
standard deviation of pressure as a function of the axial location along the airfoil
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                                                                                                       (3)                                                          

for the two airfoils is shown in Figure 11. Thirty perturbations (nmax = 30) of the basic geometry and their
corresponding flow fields were computed to determine σlocal in Eq. 3. The minimum variance airfoil yields
a distribution that is significantly lower than that obtained with the airfoil with the maximum wedge angle.
However, both these airfoils  (and the other airfoils on the Pareto front) perform the same function of
turning and accelerating the flow by a specified amount.  The exit flow angle varied ±0.32% over the ten
airfoils and, the exit Mach number varied± 0.04%.

In conclusion, simulation costs associated with robust optimal design will determine the rapidity
with which this technology is assimilated into industrial practice.  Since the number of simulations required
for a particular design depends on the efficiency of the optimization algorithm utilized, improvements in
algorithmic efficiency are critical. The introduction of surrogate models in the optimization procedure
(Kriging models are used in Ref. 3 for reliability based design and neural networks are used in Ref. 16 to
compute performance variability in robust optimal design) will certainly reduce design costs. The increased
use of Pareto front estimators and hybrid approaches, for example evolutionary algorithms with
embedded local search capability, will also serve to reduce design costs. The potential of increasing safety
and, reducing maintenance costs makes robust optimal design a very exciting field of research.
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Fig. 1. Fin geometry and design variables.

Fig. 2. Heat load at various base temperatures.
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Fig. 3. Temperature variation along the axis of the fin.

Fig. 4. Pareto optimal front in objective space for the fin showing the trade-off between heat load
and safe operating base temperature range.
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Fig. 5. Heat load as a function of base temperature for the maximum heat load and maximum
SOBTR designs.

Fig. 6. Fin geometries for the maximum heat load and maximum SOBTR designs.
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Fig. 7. Pareto optimal front in design space for the airfoil.

Fig. 8. Pareto optimal front in objective space for the airfoil.
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Fig. 9. Airfoil shapes corresponding to the minimum variance and maximum wedge angle cases.

Fig. 10. Surface pressure distributions corresponding to the minimum variance and maximum wedge
angle cases.
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Fig. 11. Distribution of σlocal for the minimum variance and maximum wedge angle cases.


